Non-constant genus 2 curves with pro-Galois covers

نویسندگان

  • Claus Diem
  • Gerhard Frey
چکیده

For every odd prime number p, we give examples of non-constant smooth families of genus 2 curves over fields of characteristic p which have pro-Galois (pro-étale) covers of infinite degree with geometrically connected fibers. The Jacobians of the curves are isomorphic to products of elliptic curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-constant Curves of Genus 2 with Infinite Pro-Galois Covers

For every odd prime number p, we give examples of non-constant smooth families of curves of genus 2 over fields of characteristic p which have pro-Galois (pro-étale) covers of infinite degree with geometrically connected fibers. The Jacobians of the curves are isomorphic to products of elliptic curves.

متن کامل

Unramified Covers of Galois Covers of Low Genus Curves

Let X → Y be a Galois covering of curves, where the genus of X is ≥ 2 and the genus of Y is ≤ 2. We prove that under certain hypotheses, X has an unramified cover that dominates a hyperelliptic curve; our results apply, for instance, to all tamely superelliptic curves. Combining this with a theorem of Bogomolov and Tschinkel shows that X has an unramified cover that dominates y = x − 1, if char...

متن کامل

Singular Bidouble Covers

A bidouble cover is a nite at Galois morphism with Galois group (Z=2) 2 ?. The structure theorem for smooth Galois (Z=2) 2 ? covers was given in Cat2] pag. 491-493] where bidouble covers of P 1 P 1 were introduced in order to nd interesting properties of the moduli spaces of surfaces of general type. In this paper we develop general formulae for the case of resolutions of singular bidouble cove...

متن کامل

Construction of covers in positive characteristic via degeneration

In this note we construct examples of covers of the projective line in positive characteristic such that every specialization is inseparable. The result illustrates that it is not possible to construct all covers of the generic r-pointed curve of genus zero inductively from covers with a smaller number of branch points. 2000 Mathematical Subject Classification: Primary 14H30, 14H10 Let k be an ...

متن کامل

Exceptional Covers and Bijections on Rational Points

We show that if f : X −→ Y is a finite, separable morphism of smooth curves defined over a finite field Fq, where q is larger than an explicit constant depending only on the degree of f and the genus of X , then f maps X(Fq) surjectively onto Y (Fq) if and only if f maps X(Fq) injectively into Y (Fq). Surprisingly, the bounds on q for these two implications have different orders of magnitude. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009